Project Description

Insulin-like growth factor 1 (IGF-1) also known as somatomedin C or mechano growth factor is a protein that in humans is encoded by the IGF1gene.[1][2] IGF-1 has also been referred to as a “sulfation factor”[3] and its effects were termed “nonsuppressible insulin-like activity” (NSILA) in the 1970s.

IGF-1 is a hormone similar in molecular structure to insulin. It plays an important role in childhood growth and continues to have anabolic effects in adults. A synthetic analog of IGF-1, mecasermin is used for the treatment of growth failure.[4]

IGF-1 consists of 70 amino acids in a single chain with three intramolecular disulfide bridges. IGF-1 has a molecular weight of 7649 daltons

Synthesis and circulation

IGF-1 is produced primarily by the liver as an endocrine hormone as well as in target tissues in a paracrine/autocrine fashion. Production is stimulated by growth hormone (GH) and can be retarded by undernutrition, growth hormone insensitivity, lack of growth hormone receptors, or failures of the downstream signalling pathway post GH receptor including SHP2 and STAT5B. Approximately 98% of IGF-1 is always bound to one of 6 binding proteins (IGF-BP). IGFBP-3, the most abundant protein, accounts for 80% of all IGF binding. IGF-1 binds to IGFBP-3 in a 1:1 molar ratio.

In rat experiments the amount of IGF-1 mRNA in the liver was positively associated with dietary casein and negatively associated with a protein free diet.

Mechanism of action

Its primary action is mediated by binding to its specific receptor, the Insulin-like growth factor 1 receptor, abbreviated as “”IGF1R””, present on many cell types in many tissues. Binding to the IGF1R, a receptor tyrosine kinase, initiates intracellular signaling; IGF-1 is one of the most potent natural activators of the AKTsignaling pathway, a stimulator of cell growth and proliferation, and a potent inhibitor of programmed cell death.

IGF-1 is a primary mediator of the effects of growth hormone (GH). Growth hormone is made in the anterior pituitary gland, is released into the blood stream, and then stimulates the liver to produce IGF-1. IGF-1 then stimulates systemic body growth, and has growth-promoting effects on almost every cell in the body, especially skeletal muscle, cartilage, bone, liver, kidney, nerves, skin, hematopoietic cell, and lungs. In addition to the insulin-like effects, IGF-1 can also regulate cell growth and development, especially in nerve cells, as well as cellular DNA synthesis.

Deficiency of either growth hormone or IGF-1 therefore results in diminished stature. GH-deficient children are given recombinant GH to increase their size. IGF-1 deficient humans, who are categorized as having Laron syndrome, or Laron’s dwarfism, are treated with recombinant IGF-1. In beef cattle, circulating IGF-I concentrations are related to reproductive performance.


IGF-1 binds to at least two cell surface receptors: the IGF-1 receptor (IGF1R), and the insulin receptor. The IGF-1 receptor seems to be the “physiologic” receptor – it binds IGF-1 at significantly higher affinity than IGF-1 is bound to the insulin receptor. Like the insulin receptor, the IGF-1 receptor is a receptor tyrosine kinase – meaning it signals by causing the addition of a phosphate molecule on particular tyrosines. IGF-1 activates the insulin receptor at approximately 0.1x the potency of insulin. Part of this signaling may be via IGF1R/Insulin Receptor heterodimers (the reason for the confusion is that binding studies show that IGF1 binds the insulin receptor 100-fold less well than insulin, yet that does not correlate with the actual potency of IGF1 in vivo at inducing phosphorylation of the insulin receptor, and hypoglycemia)..

IGF-1 is produced throughout life. The highest rates of IGF-1 production occur during the pubertal growth spurt. The lowest levels occur in infancy and old age.

Other IGFBPs are inhibitory. For example, both IGFBP-2 and IGFBP-5 bind IGF-1 at a higher affinity than it binds its receptor. Therefore, increases in serum levels of these two IGFBPs result in a decrease in IGF-1 activity.

Related growth factors IGF-1 is closely related to a second protein called “IGF-2”. IGF-2 also binds the IGF-1 receptor. However, IGF-2 alone binds a receptor called the “IGF II receptor” (also called the mannose-6 phosphate receptor). The insulin growth factor-II receptor (IGF2R) lacks signal transduction capacity, and its main role is to act as a sink for IGF-2 and make less IGF-2 available for binding with IGF-1R. As the name “insulin-like growth factor 1” implies, IGF-1 is structurally related to insulin, and is even capable of binding the insulin receptor, albeit at lower affinity than insulin.

Regulation of aging The daf-2gene encodes an insulin-like receptor in the worm C. elegans. Mutations in daf-2 have been shown by Cynthia Kenyon to double the lifespan of the worms.[7] The gene is known to regulate reproductive development, aging, resistance to oxidative stress, thermotolerance, resistance to hypoxia, and also resistance to bacterial pathogens.[8] DAF-2 is the only insulin/IGF-1 like receptor in the worm. Insulin/IGF-1-like signaling is conserved from worms to humans. DAF-2 acts to negatively regulate the forkheadtranscription factor DAF-16 through a phosphorylation cascade. Genetic analysis reveals that DAF-16 is required for daf-2-dependent lifespan extension and dauer formation. When not phosphorylated, DAF-16 is active and present in the nucleus.

Factors influencing the levels in the circulation

Factors that are known to cause variation in the levels of growth hormone (GH) and IGF-1 in the circulation include: genetic make-up, the time of day, age, sex, exercise status, stress levels, nutrition level and body mass index (BMI), disease state, race, estrogen status and xenobiotic intake.[9] The later inclusion of xenobiotic intake as a factor influencing GH-IGF status highlights the fact that the GH-IGF axis is a potential target for certain endocrine disrupting chemicals – see also endocrine disruptor.

Diseases of deficiency and resistance

Rare diseases characterized by inability to make or respond to IGF-1 produce a distinctive type of growth failure. One such disorder, termed Laron dwarfism does not respond at all to growth hormone treatment due to a lack of GH receptors. The FDA has grouped these diseases into a disorder called severe primary IGF deficiency. Patients with severe primary IGFD typically present with normal to high GH levels, height below -3 standard deviations (SD), and IGF-1 levels below -3SD. Severe primary IGFD includes patients with mutations in the GH receptor, post-receptor mutations or IGF mutations, as previously described. As a result, these patients cannot be expected to respond to GH treatment. The IGF signaling pathway appears to play a crucial role in cancer. Several studies have shown that increased levels of IGF lead to an increased risk of cancer.[citation needed] Studies done on lung cancer cells show that drugs inhibiting such signaling can be of potential interest in cancer therapy.

Use as a diagnostic test

IGF-1 levels can be measured in the blood in 10-1000 ng/ml amounts. As levels do not fluctuate greatly throughout the day for an individual person, IGF-1 is used by physicians as a screening test for growth hormone deficiency and excess in acromegaly and gigantism. Interpretation of IGF-1 levels is complicated by the wide normal ranges, and variations by age, sex, and pubertal stage. Clinically significant conditions and changes may be masked by the wide normal ranges. Sequential management over time is often useful for the management of several types of pituitary disease, undernutrition, and growth problems


0.5mg, 1mg